
Requirements Use case Tool (RUT) 
James R. McCoy 

Software Assurance Technology Center 
NASA Goddard Space Flight Center 

Greenbelt, MD  20771 
301-286-9643 

james.mccoy@gsfc.nasa.gov
 
 

 

ABSTRACT 
The Requirements Use case Tool (RUT) provides assistance to 
managers, customers, and developers in assessing the quality of 
use cases.  In addition, RUT serves as a database repository for 
requirements developed as use cases.  To ensure consistency, the 
tool provides a standard use case template to be used for all use 
case entry into the repository.  Furthermore, RUT provides 
integration with Rational Rose, the industry-standard tool for 
developing UML diagrams.  The tool also provides a series of 
metrics useful for calculating information about the relationships 
among the captured use cases.  RUT performs use case evaluation 
by searching text and identifying risk indicators such as 
incomplete or weak phrases.  The Requirements Use case Tool is 
a valuable resource for collecting, evaluating, and maintaining 
software requirements gathered as use cases. 

RUT is a web-based, multi-user application that provides project 
team members with the ability to create, view, and modify use 
cases and related information for a particular project.  The 
“dashboard” view provided by the tool gives managers and others 
the ability to quickly ascertain the status of a project by viewing 
various use case metrics.  The tool was developed using multi-
platform, open source technologies (PHP and MySQL). 

All features of the Requirements Use case Tool described above 
will be demonstrated at the conference. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Requirements/Specifications – 
methodologies, tools. 

General Terms 
Measurement, Documentation, Verification. 

Keywords 
Use cases, requirements analysis, risk indicators. 

1. INTRODUCTION 
It is generally considered fundamental by software engineers that 
requirements are the foundation upon which an entire system is 
built.  It is further presumed that verification and validation are 
needed to assure that the desired functionality, embodied in the 
total set of requirements, is ultimately and correctly delivered.  
All too often, however, development teams fail to satisfy 
customer requirements, and it is this shortfall, usually discovered 
quite late in the schedule, that leads to a frantic cycle of fixing, 
patching, and clock watching.  The belief is that correct, 
complete, and testable software requirements are critical.  The 
success of a project—whether measured in functional or financial 
terms—can be directly related to the quality of the requirements 
[4]. 

The disciplined development and management of software 
requirements have always been critical in the implementation of 
software systems—engineers are unable to build what analysts 
and designers cannot define.  It is also generally accepted that the 
earlier in the life cycle potential risks are identified the easier it is 
to eliminate or manage the conditions that introduce those risks.  
Having accepted that requirements of good quality are the basis 
for successful project development efforts, the objective of work 
in all phases is to implement those requirements accurately.  
Studies indicate that problems with requirements are as much as 
14 times more costly to fix if they are not found until the testing 
phase as opposed to finding them in the requirements phase. 

The traditional vehicle for capturing and communicating 
requirements is the Software Requirements Specification (SRS), 
which is usually a text-based document.  The requirements 
specification, as the first tangible representation of the capability 
to be produced, establishes the basis for all of the project’s 
subsequent engineering, management, and assurance functions.   
Whenever the quality of an SRS is poor, it gives rise to risks in all 
areas of the project. 

Today, other formats for capturing and expressing software 
requirements are gaining popularity.  These modern techniques 
place an emphasis on both the user and the software rather than 
simply the software’s features only.  The Unified Modeling 
Language (UML) [1] provides such a method for capturing 
requirements through structured text called use cases. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Copyright is held by the author/owner(s). 
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA. 
ACM 1-58113-751-6/03/0010. 

2. THE UML AND USE CASES 
The UML is the industry-standard, general-purpose notational 
language for specifying, visualizing, constructing, and 
documenting the artifacts of complex software systems—



especially large, object-oriented projects.  It simplifies the 
complex process of software design, making a “blueprint” for 
construction.  At the heart of the UML are use cases; the use case 
diagram is the driver for the eight remaining diagrams that 
comprise the UML.  Use cases form the basis of how the system 
interacts with “actors” in the outside world, e.g., other users or 
systems.  UML use cases were designed to capture, via a 
combination of structured text and graphics, the functional 
requirements of a system.  The user-centered analysis provided by 
use cases is vital to capturing understandable, buildable, and 
verifiable requirements.  Strictly speaking, a use case describes an 
interaction that provides value to a particular actor [3].  A use 
case model illustrates a system’s intended functions (use cases), 
its surroundings (actors), and relationships between use cases and 
actors (use case diagrams). 

3. REQUIREMENTS USE CASE TOOL 
Extensive research has been conducted in the mechanics of 
expressing software requirements via natural language and has 
resulted in various tools—commercial and homegrown—for 
evaluating their quality and usability.  That work was extended to 
apply to use case requirements.  This initiative, undertaken by the 
Software Assurance Technology Center at the NASA Goddard 
Space Flight Center, was intended to enhance and refine a use 
case tool that offers a more methodological basis for specifying 
and managing understandable, buildable, and verifiable functional 
requirements.  The Requirements Use case Tool (RUT) provides 
assistance to software managers, customers, and developers in 
assessing the quality of use cases and serves as a project’s 
database repository for requirements developed as use cases. 

RUT was originally developed in 2001 and operated on Microsoft 
Windows operating systems installed with Microsoft Access 
2000.  The tool has recently been redeployed as a web-based 
application, which facilitates a multi-user environment so that 
various project team members have the ability to create, view, and 
modify use cases and related information collaboratively for a 
common project.  End users need only have a web browser 
installed on their computers to access the system—and can do so 
remotely.   

The current tool was developed using multi-platform, open source 
technologies (specifically, the PHP scripting language and the 
MySQL relational database management system).  This allows the 
tool to be installed on multiple operating systems and web servers 
without the need to purchase additional software.  Furthermore, 
this development approach provides users the ability to modify 
the system to suit their individual project needs and will simplify 
the process of adding additional features or components to the 
tool in the future. 

To ensure consistency, RUT provides a standard use case 
template [2] to be used for all use case entry into the repository.  

In addition, the tool provides integration with Rational Rose, the 
industry-standard tool for developing UML diagrams.  Individual 
use cases can be exported from RUT and linked to use case 
diagram constructs specified in Rational Rose. 

One of the most beneficial features of RUT in terms of quality 
analysis is its capability to parse use case text for matches against 
a pre-defined and user-modifiable set of risk indicators.  
Predefined indicators are comprised of words and phrases in the 
following categories:  options, which give the developer latitude 
in satisfying the specification statements that contain them (e.g., 
can, may, and optionally); incompletes, which provide a basis for 
expanding a requirement or adding future requirements (e.g., 
TBD, not defined, and as a minimum); and weak phrases, which 
are clauses that are apt to cause uncertainty and leave room for 
multiple interpretations (e.g., adequate, normal, and timely).  The 
tool also provides a series of metrics useful for calculating 
information about the relationships among the captured use cases.  
Included metrics define the levels of ambiguity, completeness, 
volatility, and traceability among use cases. 

4. SUMMARY 
Extensive research has been conducted into writing software 
requirements of higher quality via natural language.  That 
research has resulted in the development of guidelines for writing 
more effective requirements as well as tools for evaluating them.  
However, current software development practices provide a more 
methodological basis for specifying and managing quality 
functional requirements.  The goal of the Requirements Use case 
Tool is to provide a clear evaluation technique for software 
requirements written as use cases.  Due in part to its multi-user, 
multi-platform functionality as well as its extensibility and text-
parsing capability, RUT is a valuable resource for collecting, 
evaluating, and maintaining software requirements gathered as 
use cases.  An effort is currently underway to transition this tool 
into general usage among NASA’s software project teams. 

5. REFERENCES 
[1] G. Booch, J. Rumbaugh, and I. Jacobson.  The Unified 

Modeling Language User Guide.  Addison-Wesley, 1999. 

[2] A. Cockburn.  Writing Effective Use Cases.  Addison-
Wesley, 2001. 

[3] D. Kulak and E. Guiney.  Use Cases: Requirements in 
Contex.  ACM Press, 2000. 

[4] W. Wilson, L. Rosenberg, and L. Hyatt.  Automated quality 
analysis of natural language requirements specifications.  In 
Pacific Northwest Software Quality Conference, October 
1996.

 


	INTRODUCTION
	THE UML AND USE CASES
	REQUIREMENTS USE CASE TOOL
	SUMMARY
	REFERENCES

